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1 Massive 3d gravity

Massive three dimensional gravity [1] has recently been under great scrutiny. It was shown

in [2] that topologically massive gravity (TMG) with a cosmological constant (fine tuned

with the Chern-Simons coupling) yields a theory with interesting properties. See [3–6] for

subsequent work. TMG is parity violation and propagates only one helicity of the massive

graviton. A different parity-preserving formulation for massive gravity, called New Massive

Gravity (NMG), has been put forward in [7, 8] involving a higher derivative action which

nevertheless carries no ghost.

It is the purpose of this note to display yet another action for a single massive gravi-

ton in three dimensions. This formulation, known as f-g theory, has actually been known

for a long time [9]. The idea is to consider two spin-2 fields gµν and fµν , coupled by a

potential U(g, f),

I[gµν , fµν ] =
1

16πG

∫
[√−g

(

R(g) +
2

ℓ2

)

+ σ
√

−f

(

R(f) +
2

ℓ2

)

− U(g, f)

]

(1.1)

where σ is a dimensionless constant. The action (1.1) is parity preserving and has no higher

derivative terms. This action is invariant under diagonal diffeomorphisms acting on both

metrics. Then, the spectrum contains a massless graviton (for any potential U). What

is special in three dimensions is that the massless mode is trivial (up to boundary effects

discussed below) and can be discarded. The propagating mode is then a single massive

spin-2 field with 2 (linearized) degrees of freedom, just as NMG [7].

There is much freedom in the choice of potential. For interactions not involving deriva-

tives a classification can be given [10]. As working example, we consider here the original

Isham-Salam-Strathdee potential [9] giving rise to a Pauli-Fierz theory,

U(g, f) =
ν

ℓ2

√

−f(gµν − fµν)(gαβ − fαβ)(fµαf νβ − fµνfαβ). (1.2)

Here fµν represents the inverse of fαβ. The action (1.1) contains three parameters. σ and

ν are dimensionless while ℓ is a length. The volume element in the potential
√−f can be
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generalized to |− g|u|−f | 12−u. As far as the linear theory is concerned (on the background

with fµν = gµν), all choices of u give the same theory. At the non-linear level the theories

may be very different. We have chosen u = 0 motivated by phenomenological applications

of bigravity in 4 dimensions[11–13].

Massive gravity theories suffer from the Boulware Deser instability [14, 15], at non-

linear level. In this work we shall mostly consider the linear theory.

2 Linear theory

The action (1.1) has a natural (this is not the only AdS solution, see below) AdS background

gµν = fµν = ḡµν , with ḡµνdxµdxν = −
(

1 +
r2

ℓ2

)

dt2 +
dr2

1 + r2

ℓ2

+ r2dφ2 (2.1)

Note that the potential plays no role in this solution because U and its derivatives vanish

at gµν = fµν .

Now consider fluctuations hµν and ρµν defined by,

gµν = ḡµν + hµν , fµν = ḡµν + ρµν . (2.2)

The action for the fluctuations becomes

I[hµν , ραβ ] =
1

16πG

∫ √−ḡ
(

hµν(Gh)µν + σ ρµν(Gρ)µν − ν

ℓ2
(h − ρ) · (h − ρ)

)

(2.3)

where G is the Pauli-Fierz operator on curved AdS,

hµν(Gh)µν ≡ −1

4
hνρ;µhνρ;µ +

1

2
hµν;λhλν;µ − 1

2
h;µhµν

;ν +
1

4
h;µh;µ

+
1

2ℓ2

(

hµνhµν − 1

2
h2

)

(2.4)

and we have used the shorthand notation h · h ≡ hµνhµν − h2. (Indices are raised and

lowered with ḡµν .) The fluctuations hµν and ρµν can be decoupled by a linear redefinition

of fields,

ρ = h
(0) − h

(m)
, h = h

(0)
+ σh

(m)
(2.5)

The action becomes

I =
1+σ

16πG

∫

h
(0)µν(Gh

(0)
)µν +

(1 + σ)σ

16πG

∫
[

h
(m)µνG(h

(m)
)µν−

1

4
m2

(

h
(m)µνh

(m)

µν−(h
(m)

)2
)

]

.

(2.6)

with

m2 =
4ν

ℓ2

1 + σ

σ
. (2.7)

In three dimensions h
(0)µν is trivial and can be omitted. On the other hand, the second

term is exactly the Pauli-Fierz action for h
(m)µν describing a massive unitary spin 2 particle

in three dimensions, with a new Newton constant 1
G′ = (σ+1)σ

G
. We have thus shown that
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at linearized level the action (1.1) is fully equivalent to the action recently proposed in [7].

We expect the two theories to differ at the non-linear level and at the quantum level.

The decoupling transformation (2.5) fails at σ = −1 where it becomes non-invertible.

At this point, the action (2.3) can be expressed as

I[hµν , ραβ ] =
1

16πG

∫

(

hµν
− (Gh)+µν − ν

ℓ2
(hµν

+ h+µν − h2
+)

)

(2.8)

where h±µν = hµν ± ρµν . This action also arises in NMG theory [7] for a particular value

of the couplings. The field content is a propagating massive vector field [7].

3 Warped black holes and critical point

The action (1.1) contains an anti-de Sitter background and thus it also contains black holes

constructed as quotients of (2.1). This produces two identical gµν = fµν three dimensional

black holes [16, 17] with the same mass and angular momentum. One can anticipate that

these charges cannot be decoupled to have different values for each field. The reason is

that fµν − gµν = ρµν − hµν = −(1 + σ)h
(m)

µν is short range (for generic masses1). Thus,

asymptotically, both metrics approach each other.

The black holes constructed as quotients of (2.1) are asymptotically AdS, and thus

have an asymptotic SO(2,2) symmetry. This symmetry is extended to the full conformal

group [18] in the usual way.

Now, just as it happens in NMG, the action (1.1) contains a richer spectrum of black

holes. In this section we shall find black holes preserving SL(2,ℜ)×ℜ, in a way that

resembles the warped black holes discussed in [19, 20]. We also find a critical point in the

space of couplings σ, ν where the full SO(2, 2) symmetry is restored. These black holes also

obey generalized boundary conditions similar to the ones discussed in [21].

Let us look for general solutions to the equations of motion with two commuting killing

vectors ∂/∂t and ∂/∂ϕ. Metrics with two commuting killing vectors are parameterized as

ds2 = −fdt2 + hdr2 + r2dϕ2 + Jdtdϕ,

df2 = −Xdt2 + Y dr2 + Zdϕ2 + Ldtdϕ + Udtdr + V drdϕ, (3.1)

where we use the notation df2 = fµνdxµdxν . All functions f, h, J and X,Y,Z,L,U, V

depend only on r. The functions U, V can be eliminated from df2 via a coordinate redefi-

nition. However, the action is invariant only under diffeomorphisms acting simultaneously

in gµν and fµν . Thus, if U, V are eliminated from df2 they reappear in ds2. In this sense

they cannot be omitted from both gµν and fµν simultaneously.

The four-dimensional ‘Schwarzschild’ problem (without angular momentum) for the

action (1.1) was solved in [22]. See [23–25] for more recent discussions on this problem. In

four dimensions there is only one extra function U = 1
2frt(r), due to the properties of the

sphere (there are no invariant 1-forms). The solutions can be classified in two cases, U = 0

1It would be very interesting to make a systematic study of ‘dangerous’ masses with long-range fluctu-

ations.
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or U 6= 0. As shown in [22], the equations for the second case can be solved analytically,

while the first case remains unsolved. In three dimensions there are two extra functions,

U, V and correspondingly there exists 4 cases (U = 0 = V ), (U 6= 0 = V ), (U = 0 6= V ) and

(U 6= 0 6= V ). All four cases admits solutions. However, as in four dimensions, we were able

to find an exact analytic solution only for the case (U 6= 0 = V ). We discuss its properties

in this section. In the following section we shall analyze the asymptotic structure of the

equations and find asymptotic solutions for the other cases.

We plug the ansatz (3.1) in the equations of motion assuming V = 0. The solution

satisfying Brown-Henneaux conditions can be expressed as follows. First, the metric gµν is

a 3d black hole [16, 17] with a constant pre-factor,

ds2 =
1

1 + 2λν



−
(

r2

ℓ2
− Mg

)

dt2 +
dr2

r2

ℓ2
− Mg +

J2
g

4r2

+ Jgdtdϕ + r2dϕ2



 . (3.2)

(The radial coordinate appearing here differs from that in (3.1) by a constant rescaling.)
The metric fµν is given by

df2 =
1

2(1+2λν)

[

−
(

2r2

λ2ℓ2
−Mf

)

dt2+
8r2ℓ2(2r4λ2+2r2(Mfλ2ℓ2−ℓ2Mgλ

2−2Mgℓ
2)+ℓ2J2

g )dr2

λ2(4r4−4r2Mgℓ2+ℓ2J2
g )2

+Jgdtdϕ −
4ℓr

√

(r2(2−λ2)+λ2ℓ2(Mg−Mf))(4r2(2Mg−Mfλ2)+J2
g (λ2−2))dtdr

λ2(4r4−4r2Mgℓ2+J2
g ℓ2)

+r2dϕ2





(3.3)

(Here we use 8G = 1). Mg, Jg,Mf are arbitrary integration constants. Mg and Jg are

clearly the mass and angular momentum of the metric gµν . Mf plays the role of mass in

the dual metric fµν . We are missing an independent charge Jf for the metric fµν . This is

due to our assumption V = 0. We find the general asymptotic solution below. Note that

there is no choice of Mg, Jg,Mf which leads to (2.1).

The constant λ is related to the couplings ν and σ by the quadratic equation,

2νλ2 + 4σλν + ν + σ = 0 (3.4)

This means that in principle there exists two solutions for each value of ν, σ. We shall

impose the extra condition λ > 0, that eliminates one of them. This condition is necessary

for the following reason. The equations of motion for the action (1.1) contain
√

f/g. We

assume that both volume elements are positive. Now, on the solution (3.3) det fµν has the

simple expression,

det(fµν) = − r2

4λ2(1 + 2λν)3
. (3.5)

The factor 1 + 2λν must be positive (see, for example, (3.2)). Then
√
−f > 0 requires

λ > 0. If λ > 0, then from (3.4) we see that σ or ν must be negative. This is not a problem

because, on the one hand, gravitons may have negative masses on AdS, and on the other, σ

could be negative without spoiling unitarity (wrong-right sign) [7], as it is clear from (2.6).
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Note that ftr ∼ O(1/r) at space-like infinity. This is just enough to allow a conformal

structure. We discuss this in detail below (see [21] for a related analysis). There are

solutions to the action (1.1) in which U ∼ O(1), but we discard them because they do not

have a good AdS structure.

Let us investigate the asymptotic behavior of this solution. We keep here only the

dominant terms which already have the information we need. For very large r the solution

approaches

ds2 ≃ 1

1 + 2λν

[

ℓ2dr2

r2
+ r2dϕ2 − r2

ℓ2
dt2

]

(3.6)

df2 ≃ 1

2(1 + 2λν)

[

ℓ2dr2

r2
+ r2dϕ2 − 2

λ2

r2

ℓ2
dt2

]

(3.7)

We conclude that for generic values of λ this configuration is not asymptotically AdS. This

point requires some explanation. Both metrics (3.6) and (3.7) are asymptotically AdS, but

with different speeds of light because the coefficients of dt2 are different. Due to the factor
2
λ2 , the metric df2 appears warped with respect to ds2. Hence, even though each metric

has 6 Killing vectors, only four of them are common to both metrics.

The generators which leave both (3.6) and (3.7) invariant are constant time translations

t → t + a0, plus the SL(2,ℜ) isometries of the Euclidean 2-dimensional AdS2 factor ℓ2dr2

r2 +

r2dϕ2 which is common to both metrics. The full residual group is then SL(2,ℜ) × ℜ.

This resembles very much the warped solutions of [19] where the symmetry is broken by a

constant factor multiplying the fiber when one writes the AdS3 metric as a U(1) fibration

over AdS2.

A critical case occurs for the particular value λ2 = 2, where both asymptotic metrics

do become equal. For this particular value of λ the solution is asymptotically AdS3 and

a direct conformal structure can be read off (see below). Now, recall that λ is not an

arbitrary constant but given by (3.4). The particular value λ2 = 2 can occur if and only if

the parameters ν, σ are related by

5ν + σ + 4
√

2σν = 0. (3.8)

This equation defines a critical line in the space of couplings where the asymptotic sym-

metry SL(2,ℜ) × ℜ is enhanced to SO(2,2) and, in fact, the full conformal group. Condi-

tion (3.8) is not an artifact of the particular class of black holes with V = 0. We find below

the full asymptotic solution to the equations of motion and recover the same condition.

At λ2 = 2 the space of solutions (3.2) and (3.3) also contains an SO(2,2) invariant

ground state. For Mg = Mf = −1 and Jg = 0, both metrics (3.2) and (3.3) become

proportional to global AdS space,

ds2 =
1

1 + 2
√

2ν

[

−
(

1 +
r2

ℓ2

)

dt2 +
dr2

1 + r2

ℓ2

+ r2dϕ2

]

, and df2 =
1

2
ds2. (3.9)

This state then has six Killing vectors generating the group SO(2, 2). If (3.8) did not hold,

the space of solutions would not have an SO(2,2)-invariant state.
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The black hole (3.2) is clearly a quotient of the AdS ground state (3.9). This is less

clear for the metric (3.3), although one can check that it also has constant curvature. In

fact, (3.3) can be put in the form (3.2) by a change of coordinates. A similar property

also holds in four dimensions [22]: Both the metric gµν and fµν are isometric to the

Schwarzschild solution, but they are in different coordinate systems. As a matter of fact,

the generic 4d solutions found in [22] are not asymptotically AdS. If one imposes AdS fall

off conditions on [22] then a condition similar to (3.8) arises in four dimensions as well.

The global constant factors appearing in (3.2) and (3.3) ensure that these solutions

span a different sector of the theory, not related to the background (2.1) and its quotients.

In fact, the solutions built from the background (2.1) are transparent to the potential,

while (3.2) and (3.3) depend explicitly on ν.

The outcome of this discussion is that the action (1.1), with the couplings related

by (3.8), has two different AdS groundstates. Each of them have ‘excited states’, or black

holes. Black holes on (2.1) are characterized by only two charges M,J . Black holes on (3.9)

have three charges. Actually the black holes on (3.9) have more charges which are not seen

in the above solution because we have assumed V = 0 in the ansatz (3.1). In the following

section we study the asymptotic structure of black holes on (3.9) in general, and show that

the solutions are characterized by more parameters.

Symmetry breaking is at the heart of bigravity [26, 27] and one may wonder whether

demanding AdS asymptotics restricts the power of the theory. We hope to come back to

this issue elsewhere.

4 Asymptotics and conformal structures

We have proved that the action (1.1), with the couplings related by (3.8), has two AdS3

phases. A first AdS background is given by (2.1). A second class of AdS backgrounds is

given in (3.9). Without going through the details of the previous section we can re-derive

the main results on the backgrounds as follows.

We shall use a notation appropriate to the conformal structure. First, we introduce

two new coordinates z, z̄ related to the Schwarzschild coordinates t, ϕ as

z =
t

ℓ
+ ϕ, z̄ = − t

ℓ
+ ϕ. (4.1)

The asymptotic form of the metric (2.1) in these coordinates reads

ds2 ∼ ℓ2dr2

r2
+ r2dzdz̄. (4.2)

Consider the following family of AdS backgrounds,

gµν = β ḡµν , fµν = γ ḡµν , (4.3)

where β and γ are constants and ḡµν is given in (2.1). The metric ḡµν is SO(2,2) invariant.

Since β and γ are constants, the configuration (4.3) is also SO(2,2) invariant.

– 6 –
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We plug (4.3) into the equations of motion and find the following two conditions for β

and γ,

4νβ(β − γ) +
√

βγ(β − 1) = 0,

γ2(σ + 3ν) − γ(σ + 2βν) − νβ2 = 0. (4.4)

The background (2.1) corresponds to β = γ = 1, which is a solution to this system, but

there are other solutions.

Among all the solutions contained in (4.4), we are particularly interested in the critical

theory satisfying (3.8) because it contains SO(2,2) black holes. If (3.8) holds then (4.4) has

the solution

β =
1

1 + 2
√

2ν
, γ =

1

2(1 + 2
√

2ν)
(4.5)

and we recognize the background (3.9) and its associated black holes (3.2), (3.3).

Our goal now is to study linearized asymptotic fluctuations on the backgrounds (4.3),

where (3.8) is satisfied and γ and β are given by (4.4). Our main result is that the follow-

ing fields

ds2 ∼ βℓ2

(

dr2

r2
+

r2

ℓ2
dzdz̄ + T (z)dz2 + T̄ (z̄)dz̄2

)

+ · · · (4.6)

df2 ∼ γℓ2

(

ℓ2dr2

r2
+

r2

ℓ2
dzdz̄ + Q(z)dz2 + Q̄(z̄)dz̄2 +

2dr

r
(P (z)dz + P̄ (z̄)dz̄)

)

+ · · ·

satisfy the asymptotic equations, where T,Q,P and T̄ , Q̄, P̄ are arbitrary functions of

their arguments. The functions P and P̄ appearing in (4.6) can be set to zero by a simple

(trivial, zero charge) redefinition of coordinates. For example, P can be eliminated by

z̄ = z̄′ + ℓ2

2 P (z)/r2, with the effect of redefining Q. However, if we eliminate P from fµν , it

reappears in the metric gµν . In this sense, P and P̄ are physical. Note also that the black

hole (3.3) contains a contribution of this form. The fluctuations T and T̄ are just the usual

Brown-Henneaux fields.

This asymptotic solution has four charges, as promised. A crucial point is that (4.6) is

a solution if and only if (3.8) is satisfied. This has several consequences. The action (1.1)

describes massive gravitons and one may ask why terms of the form rα, where α is some non-

integer function of the mass, have not appeared in the asymptotic solution (4.6). The reason

is simple. The action (1.1) describes massive gravitons when expanded around the back-

ground (2.1). The solutions (4.6) are fluctuations on a different background (4.3), whose

spectrum is different. It is easy to prove that linearization on the background (4.3) does not

a give Pauli-Fierz theory but instead a ‘mass’ term of the form (hµ
µ)2. This does not really

provide a mass for the graviton, and explains why the expansion (4.6) has no rα terms.

The solutions (4.6) are the most general fields consistent with Brown-Henneaux trans-

formations. That is, under the coordinate redefinitions (Brown-Henneaux diffeomor-

– 7 –
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phisms),

z′ = z + ǫ(z) − 1

2

ℓ2

r2
∂̄2ǭ(z̄), (4.7)

z̄′ = z̄ + ǭ(z̄) − 1

2

ℓ2

r2
∂2ǫ(z), (4.8)

r′ = r − r

2
(∂ǫ(z) + ∂̄ǭ(z̄)), (4.9)

where ǫ(z) and ǭ(z̄) are arbitrary functions of their arguments, these metrics transform

among themselves with new fields T ′, Q′, P ′ and T̄ ′, Q̄′, P̄ ′. Let δT ≡ T ′(z)− T (z) and the

same for the other fields. Plugging (4.7) into (4.6) one obtains the transformations,

δT = −ǫ∂T − 2∂ǫT +
1

2
∂3ǫ,

δQ = −ǫ∂Q − 2∂ǫQ + P∂2ǫ +
1

2
∂3ǫ, (4.10)

δP = −ǫ∂P − ∂ǫP, (4.11)

and corresponding equations for the (psudo) anti-holomorphic fields. T is the usual Brown-

Henneaux Virasoro field transforming with weight (2, 0) and a central term. The new field

P has conformal weight 1, as expected since it appears in the metric as a 1-form Pdz.

However, Q does not transform with definite conformal weight, but has a contribution

from Q. Let us point out that the combination Q̂ ≡ Q+ ∂P does transform correctly with

h = 2 and a central term. We now prove that this combination is in fact what shows up in

the charge that generates conformal transformations.

Since the action is the sum of two Einstein-Hilbert actions (the interaction does not

have derivatives), the conserved charge associated to the asymptotic symmetries is simply

the sum of two ADM functionals. The total charge J (see, for example, [18]) is,

J = JADM [g] + σ JADM [f ]. (4.12)

By direct calculation we find the total charge to be

J(ǫ) =
1

4G

∫

dφ

2π
ǫ
(

√

βT + σ
√

γ(Q + ∂P )
)

. (4.13)

As we have suspected before hand, the relevant Virasoro charge in the f−sector is not

Q but Q + ∂P . The total charge is thus the sum of two Virasoro operators transforming

correctly under the conformal group.

The central charge can be computed directly from the transformations (4.10), the

knowledge of the charge (4.13), and the fact that δρJ(ǫ) = {J(ρ), J(ǫ)}[28]. We can arrive

at the desired result in a quicker way as follows. We know that for one metric on the

background (2.1) the central charge is 3ℓ/2G [18].

The background (4.3) differ from (2.1) by the factors β and γ in each metric. Note

that if gµν = βḡµν then
√

ggµνRµν(g) =
√

β
√

ḡḡµνRµν(ḡ) (in three dimensions). Putting

– 8 –
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everything together the total central charge is

c =
3ℓ

2G
(
√

β + σ
√

γ)

=
3ℓ

2G

1
√

1 + 2
√

2ν

(

1 +
σ√
2

)

(4.14)

where in the second line we have used (4.5). Recall that σ can be written in terms of ν

using using (3.8). These conformal models are parameterized by a single real constant ν.

This central charge can be compared with the CFT associated with the original back-

ground (2.1). In this case gµν contributes to c with 3ℓ/2G and fµν contributes with

3ℓ/2G × σ (see the action (1.1)). The total central charge is

c0 =
3ℓ

2G
(1 + σ) (4.15)

The backgrounds (4.3) make sense provided γ and β are positive. This implies that ν

must lie in the range − 1
2
√

2
< ν < ∞. In this range both c and c0 are positive and it can

be checked that c0 > c, for all the allowed range of ν. A solution interpolating both AdS

vacua flowing from c0 (UV) to c (IR) may exist.
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